Броуновское движение. Физические явления: броуновское движение В чем состоит броуновское движение

Броуновское движение - беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение - наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.
При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времен). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом а в вязкой жидкости. Соотношения для и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная NА. Кроме поступательного Броуновского движения, существует также вращательное Броуновского движение - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного Броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное Броуновское движение.

Сущность явления

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Теория броуновского движения

В 1905 году Альбертом Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения.В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц:

где D - коэффициент диффузии, R - универсальная газовая постоянная, T - абсолютная температура, N A - постоянная Авогадро, а - радиус частиц, ξ - динамическая вязкость.

Броуновское движение как немарковский
случайный процесс

Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. И хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна - Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна - Смолуховского.
Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов, и для более точного его описания необходимо использование интегральных стохастических уравнений.

Сегодня мы подробно рассмотрим важную тему - дадим определение броуновскому движению маленьких кусочков материи в жидкости или газе.

Карта и координаты

Некоторые школьники, замученные скучными уроками, не понимают, зачем изучать физику. А между тем, именно эта наука когда-то позволила открыть Америку!

Начнем издалека. Древним цивилизациям Средиземноморья в каком-то смысле повезло: они развивались на берегу закрытого внутреннего водоема. Средиземное море потому так и называется, что оно со всех сторон окружено сушей. И древние путешественники могли довольно далеко продвинуться со своей экспедицией, не теряя из вида берегов. Очертания суши помогали ориентироваться. И первые карты составлялись скорее описательно, чем географически. Благодаря этим относительно недалеким плаваниям греки, финикийцы и египтяне хорошо научились строить корабли. А где лучшее оборудование - там и стремление раздвинуть границы своего мира.

Поэтому в один прекрасный день европейские державы решили выйти в океан. Во время плавания по бескрайним просторам между материками моряки долгие месяцы видели только воду, и им надо было как-то ориентироваться. Определить свои координаты помогло изобретение точных часов и качественного компаса.

Часы и компас

Изобретение маленьких ручных хронометров очень выручило мореплавателей. Чтобы точно определить, где они находятся, им надо было иметь простейший инструмент, который измерял высоту солнца над горизонтом, и знать, когда именно полдень. А благодаря компасу капитаны судов знали, куда они направляются. И часы, и свойства магнитной стрелки изучали и создавали физики. Благодаря этому европейцам был открыт весь мир.

Новые континенты представляли собой terra incognita, неизведанные земли. На них росли странные растения и водились непонятные животные.

Растения и физика

Все естествоиспытатели цивилизованного мира ринулись изучать эти новые странные экологические системы. И конечно же, они стремились извлечь из них выгоду.

Роберт Броун был английским ботаником. Он совершал поездки в Австралию и на Тасманию, собирал там коллекции растений. Уже дома, в Англии, он много работал над описанием и классификацией привезенного материала. И ученый этот был очень дотошным. Однажды, наблюдая за движением пыльцы в соке растений, он заметил: мелкие частицы постоянно совершают хаотические зигзагообразные перемещения. В этом и состоит определение броуновского движения мелких элементов в газах и жидкостях. Благодаря открытию потрясающий ботаник вписал свое имя в историю физики!

Броун и Гуи

В европейской науке так принято: называть эффект или явление именем того, кто его обнаружил. Но часто это бывает случайно. А вот человек, который описывает, открывает важность или более подробно исследует физический закон, оказывается в тени. Так случилось и с французом Луи Жоржем Гуи. Именно он дал определение броуновскому движению (7 класс о нем точно не слышит, когда изучает эту тему по физике).

Исследования Гуи и свойства броуновского движения

Французский экспериментатор Луи Жорж Гуи наблюдал движение разного типа частиц в нескольких жидкостях, в том числе и в растворах. Наука того времени уже умела точно определять размер кусочков вещества до десятых долей микрометра. Исследуя, что такое броуновское движение (определение в физике этому явлению дал именно Гуи), ученый понял: интенсивность перемещения частиц увеличивается, если их поместить в менее вязкую среду. Будучи экспериментатором широкого спектра, он подвергал взвесь действию света и электромагнитных полей различной мощности. Ученый выяснил, что эти факторы никак не влияют на хаотические зигзагообразные скачки частиц. Гуи однозначно показал, что доказывает броуновское движение: тепловое перемещение молекул жидкости или газа.

Коллектив и масса

А теперь подробнее опишем механизм зигзагообразных скачков небольших кусочков материи в жидкости.

Любое вещество состоит из атомов или молекул. Эти элементы мира очень маленькие, ни один оптический микроскоп не способен их увидеть. В жидкости они все время колеблются и перемещаются. Когда любая видимая частица попадает в раствор, ее масса в тысячи раз больше одного атома. Броуновское движение молекул жидкости совершается хаотически. Но тем не менее все атомы или молекулы представляют собой коллектив, они связаны друг с другом, как люди, которые взялись за руки. Поэтому иногда так случается, что атомы жидкости с одной стороны частицы движутся так, что «давят» на нее, при этом с другой стороны от частицы создается менее плотная среда. Поэтому пылинка перемещается в пространстве раствора. В другом месте коллективное движение молекул жидкости случайно действует на другую сторону более массивного компонента. Именно так и совершается броуновское движение частиц.

Время и Эйнштейн

Если вещество обладает ненулевой температурой, его атомы совершают тепловые колебания. Поэтому даже в очень холодной или переохлажденной жидкости существует броуновское движение. Эти хаотические перескоки маленьких взвешенных частиц никогда не прекращаются.

Альберт Эйнштейн, пожалуй, самый знаменитый ученый двадцатого века. Всем, кто хоть сколько-нибудь интересуется физикой, известна формула E = mc 2 . Также многие могут вспомнить о фотоэффекте, за который ему дали Нобелевскую премию, и о специальной теории относительности. Но мало кто знает, что Эйнштейн разработал формулу для броуновского движения.

На основании молекулярно-кинетической теории ученый вывел коэффициент диффузии взвешенных частиц в жидкости. И произошло это в 1905 году. Формула выглядит так:

D = (R * T) / (6 * N A * a * π * ξ),

где D - искомый коэффициент, R - это универсальная газовая постоянная, T — абсолютная температура (выражается в Кельвинах), N A — постоянная Авогадро (соответствует одному молю вещества, или примерно 10 23 молекул), a — приблизительный средний радиус частиц, ξ — динамическая вязкость жидкости или раствора.

А уже в 1908 году французский физик Жан Перрен со своими студентами экспериментально доказали верность вычислений Эйнштейна.

Одна частица в поле воин

Выше мы описывали коллективное воздействие среды на много частиц. Но и один чужеродный элемент в жидкости может дать некоторые закономерности и зависимости. Например, если наблюдать за броуновской частицей долгое время, то можно зафиксировать все ее перемещения. И из этого хаоса возникнет стройная система. Среднее продвижение броуновской частицы вдоль какого-то одного направления пропорционально времени.

При экспериментах над частицей в жидкости были уточнены следующие величины:

  • постоянная Больцмана;
  • число Авогадро.

Помимо линейного движения, также свойственно хаотическое вращение. И среднее угловое смещение также пропорционально времени наблюдения.

Размеры и формы

После таких рассуждений может возникнуть закономерный вопрос: почему этот эффект не наблюдается для больших тел? Потому что когда протяженность погруженного в жидкость объекта больше определенной величины, то все эти случайные коллективные «толчки» молекул превращаются в постоянное давление, так как усредняются. И на тело уже действует общая Архимеда. Таким образом, большой кусок железа тонет, а металлическая пыль плавает в воде.

Размер частиц, на примере которых выявляется флуктуация молекул жидкости, не должен превышать 5 микрометров. Что касается объектов с большими размерами, то здесь этот эффект заметен не будет.

Тепловое движение

Любое вещество состоит из мельчайших частиц - молекул. Молекула - это наименьшая частица данного вещества, сохраняющая все его химические свойства. Молекулы расположены в пространстве дискретно, т. е. на некоторых расстояниях друг от друга, и находятся в состоянии непрерывного беспорядочного (хаотичного) движения .

Поскольку тела состоят из большого числа молекул и движение молекул беспорядочно, то нельзя точно сказать, сколько ударов будет испытывать та или иная молекула со стороны других. Поэтому говорят, что положение молекулы, её скорость в каждый момент времени случайны. Однако это не означает, что движение молекул не подчиняется определённым законам. В частности, хотя скорости молекул в некоторый момент времени различны, у большинства из них значения скорости близки к некоторому определённому значению. Обычно, говоря о скорости движения молекул, имеют в виду среднюю скорость (v$cp ).

Нельзя выделить какое-то определённое направление, в котором движутся все молекулы. Движение молекул никогда не прекращается. Можно сказать, что оно непрерывно. Такое непрерывное хаотическое движение атомов и молекул называют — . Такое название определяется тем, что скорость движения молекул зависит от температуры тела. Чем больше средняя скорость движения молекул тела, тем выше его температура. И наоборот, чем выше температура тела, тем больше средняя скорость движения молекул.

Броуновское движение

Движение молекул жидкости было обнаружено при наблюдении броуновского движения - движения взвешенных в ней очень мелких частиц твердого вещества. Каждая частица беспрерывно совершает скачкообразные перемещения в произвольных направлениях, описывая траектории в виде ломаной линии. Такое поведение частиц можно объяснить, считая, что они испытывают удары молекул жидкости одновременно с разных сторон. Различие в числе этих ударов с противоположных направлений приводит к движению частицы, поскольку ее масса соизмерима с массами самих молекул. Движение таких частиц впервые обнаружил в 1827 г. английский ботаник Броун, наблюдая под микроскопом частицы цветочной пыльцы в воде, почему оно и было названо — броуновское движение .

Что такое броуновское движение?

Сейчас вы познакомитесь с самым очевидным доказательством теплового движения молекул (второе основное положение молекулярно-кинетической теории). Обязательно постарайтесь посмотреть в микроскоп и увидеть, как движутся так называемые броуновские частицы.

Ранее вы узнали, что такое диффузия , т. е. перемешивание газов, жидкостей и твердых тел при их непосредственном контакте. Это явление можно объяснить беспорядочным движением молекул и проникновением молекул одного вещества в пространство между молекулами другого вещества. Этим можно объяснить, например, тот факт, что объем смеси воды и спирта меньше объема составляющих ее компонентов. Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие, взвешенные в воде частицы какого-либо твердого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Это тепловое движение взвешенных в жидкости (или газе) частиц.

Наблюдение броуновского движения

Английский ботаник Р. Броун (1773-1858) впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна. Позже он рассматривал и другие мелкие частицы, в том числе частички камня из египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммигут, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Самым поразительным и непривычным для нас является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броун вначале думал, что споры плауна проявляют признаки жизни.

тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растет. На рисунке 8.3 приведена схема движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.

Броуновское движение можно наблюдать и в газе. Его совершают взвешенные в воздухе частицы пыли или дыма.

Красочно описывает броуновское движение немецкий физик Р. Поль (1884-1976): «Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе . Перед ним открывается новый мир - безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая - вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя».

В настоящее время понятие броуновское движение используется в более широком смысле. Например, броуновским движением является дрожание стрелок чувствительных измерительных приборов, которое происходит из-за теплового движения атомов деталей приборов и окружающей среды.

Объяснение броуновского движения

Объяснить броуновское движение можно только на основе молекулярно-кинетической теории. Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга . На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул. При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.



Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от этого среднего значения. Чем меньше площадь поверхности тела, тем заметнее относительные изменения силы давления, действующей на данную площадь. Так, например, если площадка имеет размер порядка нескольких диаметров молекулы, то действующая на нее сила давления меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.

Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955).

Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории.

Опыты Перрена

Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле, то за счет теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определенное распределение молекул по высоте, о чем сказано выше, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причем, чем больше масса молекул, тем быстрее с высотой убывает их концентрация.

Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжелых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.

Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашел, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счет большой массы броуновских частиц убывание происходит очень быстро.

Более того, подсчет броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с известным.

Все эти факты свидетельствуют о правильности теории броуновского движения и, соответственно, о том, что броуновские частицы участвуют в тепловом движении молекул.

Вы наглядно убедились в существовании теплового движения; увидели, как происходит беспорядочное движение. Молекулы движутся еще более беспорядочно, чем броуновские частицы.

Сущность явления

Теперь давайте попробуем разобраться в сущности явления броуновского движения. А происходит оно потому, что все абсолютно жидкости и газы состоят из атомов или молекул. Но также нам известно, что эти мельчайшие частицы, находясь в непрерывном хаотическом движении, постоянно толкают броуновскую частицу с разных сторон.

Но вот что интересно, ученые доказали, что частицы более крупных размеров, которые превышают 5 мкм остаются неподвижными и в броуновском движении почти не участвуют, чего не скажешь о более мелких частицах. Частицы, имеющие размер менее 3 мкм, способны двигаться поступательно, совершая вращения или выписывая сложные траектории.

При погружении в среду крупного тела, происходящие в огромном количестве толчки, как бы выходят на средний уровень и поддерживают постоянное давление. В этом случае в действие вступает теория Архимеда, так как окруженное средой со всех сторон крупное тело уравновешивает давление и оставшаяся подъемная сила позволяет этому телу всплыть, или утонуть.

Но если тело имеет размеры такие, как броуновская частица, то есть совершенно незаметные, то становятся заметны отклонения давления, которые способствуют созданию случайной силы, которая приводит к колебаниям этих частиц. Можно сделать вывод, что броуновские частицы в среде находятся во взвешенном состоянии, в отличие от больших частиц, которые тонут или всплывают.

Значение броуновского движения

Давайте попробуем разобраться, имеет ли какое-либо значение броуновское движение в природной среде:

Во-первых, броуновское движение играет значительную роль в питании растений из почвы;
Во-вторых, в организмах человека и животных всасывание питательных веществ происходит через стенки органов пищеварения благодаря броуновскому движению;
В-третьих, в осуществлении кожного дыхания;
Ну и последнее, имеет значение броуновское движение и в распространении вредных веществ в воздухе, и в воде.

Домашнее задание

Внимательно прочитайте вопросы и дайте письменные ответы на них:

1. Вспомните, что называется диффузией?
2. Какая существует связь между диффузией и тепловым движением молекул?
3. Дайте определение броуновскому движению.
4. Как вы думаете, является ли броуновское движение тепловым, и обоснуйте свой ответ?
5. Изменится ли характер броуновского движения при нагревании? Если изменится, то, как именно?
6. Каким прибором пользуются при изучении броуновского движения?
7. Меняется ли картина броуновского движения при увеличении температуры и как именно?
8. Произойдут ли какие-либо изменения в броуновском движении, если водную эмульсию заменить на глицериновую?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Броуновское движение - это непрерывное, постоянное хаотическое движение взвешенных в жидкости (либо газе) частиц. Используемое сейчас название явление получило в честь своего первооткрывателя - английского ботаника Р. Броуна. В 1827 году им был проведен опыт, в результате которого и было обнаружено броуновское движение. Также ученый обратил внимание на то, что частицы не только передвигаются по окружающей среде, но и вращаются вокруг своей оси. Поскольку в то время молекулярная теория строения вещества еще не была создана, полностью проанализировать процесс Броун не смог.

Современные представления

В настоящее время считается, что броуновское движение вызывается столкновением взвешенных в жидкости или газе частиц с молекулами вещества, окружающего их. Последние находятся в постоянном движении, называемым тепловым. Они-то и вызывают хаотическое движение частиц, из которых состоит любое вещество. Важно отметить, что с этим явлением связаны два других: описываемое нами броуновское движение и диффузия (проникновение частиц одного вещества в другое). Рассматривать эти процессы следует в комплексе, поскольку они объясняют друг друга. Итак, за счет столкновений с окружающими молекулами, взвешенные в среде частицы находятся в непрерывном движении, которое также является хаотическим. Хаотичность выражается в непостоянстве, как направления, так и скорости.

С точки зрения термодинамики

Известно, что при повышении температуры скорость броуновского движения также повышается. Эта зависимость легко объясняется уравнением для описания средней кинетической энергии движущейся частицы: E=mv 2 =3kT/2, где m - масса частицы, v - скорость движения частицы, k - постоянная Больцмана, и T - внешняя температура. Как мы видим, квадрат скорости движения подвешенной частицы прямо пропорционален температуре, следовательно, при повышении температуры внешней среды увеличивается и скорость. Отметим, что основным принципом, на основе которого составлено уравнение, является равенство средней кинетической энергии движущейся частицы кинетической энергии частиц, из которых состоит среда (то есть жидкость или газ, в которой она подвешена). Эта теория была сформулирована А. Эйнштейном и М. Смолуховским примерно в одно и то же время независимо друг от друга.

Движение броуновских частиц

Подвешенные в жидкости или газе частицы движутся по зигзагообразной траектории, постепенно отдаляясь от точки начала движения. Опять же Эйнштейн и Смолуховский пришли к выводу, что для изучения движения броуновской частицы основное значение имеет не пройденный путь или фактическая скорость, а ее среднее смещение за определенный промежуток времени. Предложенное Эйнштейном уравнение выглядит следующим образом: r 2 =6kTBt. В этой формуле r - среднее смещение подвешенной частицы, B - ее подвижность (эта величина, в свою очередь, находится в обратной зависимости от вязкости среды и размера частицы), t - время. Следовательно, скорость движения подвешенной частицы тем выше, чем меньше вязкость среды. Справедливость уравнения была экспериментально доказана французским физиком Ж. Перреном.